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In an attempt to understand the foraging of a generalist herbivore, a linear 
programming optimization model was constructed to describe moose feeding 
in summer. The model attempts to predict the amounts of aquatic vegetation, 
deciduous leaves, and forbs a moose should consume each day; and to determine 
whether or not its feeding is constrained by the maximum feeding time available 
each day, its daily rumen processing capacity, its sodium requirements, and 
its energy metabolism. The model can be solved for two alternative strategies: 
time minimization and energy maximization. The energy-maximizing strategy 
appears to predict the observed diet chosen by an average moose very well. Also, 
the diets selected by moose of each sex and various reproductive states appear to 
fit the energy-maximizing strategy. In addition, it is demonstrated that a moose’s 
body size at weaning, size at first reproduction, and maximum size are related 
to foraging efficiency. Furthermore, there appears to exist an optimum adult 
body size for feeding. The general conclusion arrived at is that the foraging of a 
generalist herbivore can be predicted in a quantitative manner, at least in this 
case, as has been shown for other types of consumers (carnivores and granivores). 

The theory of optimal foraging (MacArthur and Pianka, 1966; MacArthur, 
1972; Schoener, 1969a,b, 1971; Covich, 1973; Pulliam, 1974; Cody, 1974; 
Katz, 1974; Emlen, 1966, 1968, 1973) has been successfully applied to a number 
of animals, both under controlled laboratory conditions and in the field (Wolf 
and Hainsworth, 1971; Wolf et aZ., 1972; Pulliam and Enders, 1971; Schoener, 
1969b; Menge, 1975; Charnov, 1976; Werner and Hall, 1974; Emlen and 
Emlen, 1975). This theory, however, has not been applied to herbivores, 
those animals eating leaves and twigs, because their diets are very complex: 

(1) Different parts of plants (i.e., leaves, buds, twigs, etc.) are of different 
digestibilities at any one time and the digestibilities vary from season to season. 

(2) The digestibility varies among individual plants within the same species 
and among species. 

(3) Different plants are thought to be selected to meet different nutritive 
requirements (i.e., one plant may be selected to meet protein requirements, 
and another to meet mineral requirements; still another may be selected because 
it is high in energy, although it may be low in these other components). 
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Two recent studies (Westoby, 1974; Freeland and Janzen, 1974) have con- 
sidered herbivore feeding strategies. Their general conclusion is that animals 
select food plants in an effort to avoid overingestion of any one plant toxin 
and to achieve nutrient and energy requirements. These authors list a series 
of alternative hypotheses for herbivore feeding strategies, but do not define 
an optimal strategy. Their hypotheses are too complex to be tested in terms 
of a simple foraging model, such as those presented previously for other types 
of consumers. 

In this paper, I have developed a very simplified optimization model for a 
foraging herbivore, using the moose (A&s &es), as an example. The model 
is based upon only two nutrient requirements for a moose: sodium, which 
is found in aquatic plants that are low in energy content; and energy, which 
is reasonably abundant in all other food plants that are low in sodium. Two 
alternative hypotheses are solved for in the model: the moose as an energy- 
intake maximizer or a feeding-time minimizer (Schoener, 1969a,b). Using 
these alternative hypotheses, the model makes relatively simple predictions 
which can be tested with field observations. Observations of moose feeding 
during the summer indicate that the model’s predictions are validated for the 
conditions faced by a moose at Isle Royale National Park, Michigan. It is, 
therefore, concluded that the situation faced by some herbivores in selecting 
a diet is not as complex as has been previously supposed. 

THE MODEL 

The optimization technique of linear programming has long been used by 
livestock producers to determine the diet for cattle which produces the greatest 
growth rate or milk production at the lowest possible cost. Recently, Westoby 
(1974) suggested that this technique might be applied to determine whether 
or not an animal forages in an optimal manner. 

To employ linear programming to an optimization problem, one must be 
able to (1) specify some quantity to be maximized or minimized (goal); (2) 
identify limits in achieving this goal (constraints). After doing this, one needs 
to establish equations for the goal and constraints, in terms of variables which 
are responsible for the process in question; e.g., in feeding, the variables are 
quantities of different foods. This requires an ability to measure the interrela- 
tionships between the quantity of a variable and the achievement of a constraint 
or goal. 

The equations in a linear program must be linear and of the form 

C < or > C aixi , 
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for constraints, where xi is the quantity of variable i, and ai transposes xi into 
the units of the constraint, C; and 

for the goal, where bi transposes xi into the units of the goal, P. Using these 
equations, the basic theorem of linear programming states that the optimal 
solution for our goal, if one exists, occurs at the intersection of at least two 
constraint equations. The linear programming algorithm finds the values of 
the i variables at each intersection, calculates P for these values, and compares 
all such intersections to find the one which gives the optimum P value. It is 
possible, however, depending upon the equations, to have no optimal solution 
(constraints do not intersect) or infinite solutions (the goal equation intersects 
a constraint equation along a line segment). Strum (1972) gives a detailed 
description of the linear programming algorithm. 

For the purposes of this paper, only the summer feeding of moose will be 
analyzed (June 3-September 15). This period is important because it is then 
that moose bear their young and store fat for the lean winter period. During 
the summer feeding period, moose consume aquatic macrophytes in beaver 
ponds, the leaves of deciduous plants, and forbs. The model does not distinguish 
among species of plants in each of the above three food classes. Therefore, 
the moose as portrayed in the model need only decide on which and how much 
of each food class it will consume. 

In constructing the linear programming model for moose feeding, it was 
assumed that the animal had two alternative goals (symbols listed in Table I): 

(1) Energy maximization is a potential goal, since the more food available, 
the greater its potential for reproduction and fat storage. This goal is written as 

E = 1 (K,D+ - S,)“( , 

where E is the energy available to a moose, Ki is the gross caloric content 
of food i per unit dry weight, Di is the dry matter digestibility of food class i, 
Si is the energetic cost of cropping a unit dry weight of food i, and xi is the dry 
matter weight of food class i consumed. Therefore, Ki , n, , and Si must be 
measured for a moose’s various foods. 

(2) Feeding time minimization is a possible goal for two reasons. One, the 
less time that a moose feeds, the lower its exposure to predation by wolves 
(Canis Zupus) and to environmental conditions that would lead to thermal 
imbalance. Second, the less time a moose spends feeding, the more time it 
can spend selecting mates, caring for offspring, etc. The time-minimization 
goal is written as 
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TABLE I 

A Glossary of Terms Used in the Text 

ai 
Bi 
bi 

c 
Di 
Ki 
M 

MM 

n/r, 

NM 

NR 

NE 

P 

R 

& 

s 

ti 
E 

T 

TT 

TA 

I 

TE 

W 

Xi 
Y 

A linear program constant pertaining to food class i 

The bulkiness of food class i (g-wet wt/g-dry wt) 

A constant transposing the quantity of food class i in the diet into the quantity 
to be optimized 

A linear programming constraint 

The percentage digestibility of food class i 

The gross caloric content of food class i 

The animal’s basal metabolism (kcal/day) 

The animal’s maintenance metabolism (kcal/day) 

The animal’s metabolism for maintenance, growth and reproduction (kcal/day) 

The animal’s sodium requirements for maintenance (g-dry wt of aquatics con- 
sumed/day) 

The animal’s sodium requirements for maintenance, growth, and reproduction 
(g-dry wt of aquatics consumed/day) 

The net energy intake by the animal 

The optimum value of concern 

The daily rumen processing capacity (g-wet wt/day) 

The energy expended by an animal in moving from food plant i to food plant i to 
crop a unit weight of food i (kcal/g-dry wt) 

The sex specific variable transposing the bull’s R value into the cow’s 

The time spent in cropping a unit weight of food class i (min/g-dry wt) 

The maximum energy intake goal (kcal/day) 

The minimum time spent feeding (min/day) 

The time available for feeding on land (min/day) 

The time available for feeding in water (min/day) 

The terrestrial consumption by the animal (g-dry wt/day) 

The energy supplied to an animal by consuming terrestrial plants (kcal/day) 

The animal’s weight in kilograms 

The quantity of food class i in the animal’s diet (g-dry wt/day) 

The number of calves being raised by a cow 

where T is the time spent feeding, and ti is the time required to crop a unit 
dry weight of food class i. In this case, ti must be measured by observing moose 
feed. 

The next step in constructing the linear programming model is to determine 
what constraints operate upon a moose’s feeding. Four constraints are assumed 
to be important: 
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(1) An animal must satisfy it energy requirements. Two alternative energy 
demand terms can be used in the model: the metabolic demands for maintenance, 
MM (including the necessary energy storage for the winter period), and the 
metabolic demands for maintenance, increased body size, and reproduction, Ma . 
If M, is not surpassed or equaled, the individual will perish, while the failure 
to achieve M, leads to the extinction of the population, since reproduction 
will not equal mortality. The constraint equation can be written 

In this constraint, we are measuring the amount of a moose’s energy demand 
supplied by each food class and the variables are the same as those required 
in the energy goal equation. 

(2) Sodium is a potentially limiting mineral for a moose and it has been 
demonstrated that sodium is in short supply for moose at Isle Royale (Botkin 
et al., 1973; Jordan et al., 1973). Lack of this mineral can prevent reproduction 
and lead to death (Church et al., 1971). Aquatic macrophytes are the only 
significant source of sodium for moose. These plants are available only during 
the summer and moose are never seen feeding in ponds during any other 
season. This time limitation is believed to arise from the moose’s problem 
of excessive heat loss to cold water during periods other than summer. As a 
result of this time limitation, the moose must satisfy its annual sodium require- 
ments during the summer or perish. 

The quantity of sodium required by a moose depends upon whether the 
moose is simply maintaining itself, NM , or reproducing, iVa . This difference 
is due to the large quantities of sodium required for growth and reproduction 
(Jordan et al., 1973). Therefore, this constraint can be written 

NM or NR < x1 , (4) 

where NM and Na are the quantities of aquatic vegetation which must be 
consumed each day if the moose is to satisfy its sodium requirements and x1 
is the quantity (dry weight) of aquatics consumed. For this constraint, one 
must be able to measure NM and Na . 

(3) The amount of feeding time avaiZabZe to a moose each day is another 
potential constraint. This arises from two problems: the avoidance of excessive 
heat loads during certain portions of the day and a time investment in rumination 
to achieve some desired digestibility of food plants. First, the moose, like 
other animals, must limit its activity to times and habitats which allow it to 
maintain thermal homeostasis. Second, a moose as a ruminant must spend 
time regurgitating its food and remasticating it for the symbiotic microorganisms 
in its rumen, to achieve some level of digestibility. This second rationale for 
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time limitation is an assumption which is addressed in the Appendix. The 
feeding time limitation, both thermal and ruminating, has been worked out 
and presented in another paper (Belovsky, 1977). In this study, it was found 
that the moose’s available time for feeding in aquatic and terrestrial sites is 
independent, owing to the high thermal conductivity of water. 

The time constraint is written as 

for aquatic plants, and 

TT > c tix, , i = 2, 3, 
E 

for terrestrial plants, where TA is the time available each day for feeding on 
aquatics, TT is the time available for feeding on land during each day, and t, 
is the amount of time it requires to crop a unit dry weight of aquatic plants. 
ti and t, are identical to the variables in the time-minimization goal. Therefore, 
in this constraint, we must measure T, , TT , and ti , including t, . 

(4) The last constraint is the moose’s daily rumen capacity, since it is generally 
thought that a food plant’s physical qualities determine its passage rate through 
the rumen (Baile and Forbes, 1974; Blaxter, 1967; Church et al., 1971). The 
rumen, the first of four stomachs, is a container of fixed volume in which plant 
tissues are fermented. Furthermore, the rumen is constructed to control food 
passage depending upon the breakdown of these foods. The term “rumen 
capacity” refers to the quantity of food in the rumen, since a large portion 
of the structure’s volume contains saliva, water, and various digestive fluids. 
Also, it is assumed that a moose’s rumen capacity fills as a function of the wet 
weight of plants contained in it (see the Appendix for a discussion). 

Th e rumen constraint is written as 

where R is the amount of food (wet weight) which passes through the rumen 
each day and Bi is the amount of rumen capacity taken up by a quantity of 
food i. Both R and Bi must be measured. This constraint is season dependent 
since R and Bi vary with the physical qualities of plants that change between 
seasons. 

Now that we have hypothesized alternative goals and potentially limiting 
factors for a moose’s feeding (constraints); we need to measure (1) the parameters 
in the goal and constraint equations and (2) the moose’s actual feeding behavior. 
By using the feeding model to predict the moose’s behavior, we can compare 
the result to a moose’s observed behavior. If the model’s predictions compare 
poorly with the observed behavior, we can be fairly confident that the model’s 
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constraints or goals are not important for a moose’s feeding. On the other 
hand, if the model’s predictions agree with a moose’s behavior, one can say 
that there exists strong evidence that a moose’s foraging operates in the manner 
specified by the model. The only way to truly test the model, however, is to 
change the values of the parameters in the constraint and goal equations by 
studying moose in a different environment and determine whether or not the 
model is still predictive. 

DATA REQUIRED FOR THE MODEL 

The majority of parameter values in this model were obtained from field 
and laboratory measurements made at Isle Royale National Park, Michigan, 
between 1972 and 1974 (Belovsky and Jordan, 1978). All parameter values 
refer to an upland forest dominated by Betula alleghaniensis and are presented 
with their confidence intervals (95%). 

ti: The time required to crop a quantity of food (i = 1, aquatics; i = 2, 
deciduous leaves; and i = 3, forbs) was found to be 0.05 f 0.01 min/g-dry wt 
of aquatics, 0.06 f 0.01 min/g-dry wt for deciduous leaves, and 0.12 & 0.02 
min/g-dry wt for forbs (Belovsky and Jordan, 1978). 

Si: The cost of acquiring a quantity of food was found to equal 0.01 + 0.01 
kcal/g-dry wt for deciduous leaves, 0.01 5 0.01 kcal/g-dry wt for forbs, and 
0.03 & 0.02 kcal/g-dry wt for aquatics (Belovsky and Jordan, 1978). 

Bi: The bulkiness of a quantity of food was found to be 4.0 g-wet wt/ 
g-dry wt for deciduous leaves (3.7 to 4.5), 4.4 g-wet wt/g-dry wt for forbs 
(3.3 to lO.O), and 20.0 g-wet wt/g-dry wt for aquatics (5.3 to 100.0) (Belovsky 
and Jordan, 1978). 

Di: The dry matter digestibility of each food was measured to be 72”/” 
for deciduous leaves, 86% for forbs, and 94% for aquatics (Belovsky and 
Jordan, 1978). 

Ki: The gross caloric value of food is 4.2 kcal/g-dry wt for deciduous leaves 
(Golley, 1961), 4.8 kcal/g-dry wt for forbs (Golley, 1961), and 4.1 kcal/g-dry wt 
for aquatics (Boyd, 1970). It is assumed that these average values are adequate, 
since the variations in caloric value for similar plants are small (Golley, 1961). 

TA and T,: To avoid circularity, we need an estimate of a moose’s maximum 
potential daily feeding time. Through measurements of thermal parameters in 
the moose’s environment, an optimization model was developed to predict the 
amount of feeding time available to a moose each day. This model predicts, 
on the basis of a moose’s thermal balance, when, where, and for how long a 
moose should feed. The model is presented elsewhere (Belovsky, 1977); it 
predicts that a moose has 256 min/day to feed on land (TT) and 150 min/day 
to feed in water (TA). 

6.53/'4:1-8 



112 GARY E. BELOVSKY 

MM and MR: A moose’s basal energy metabolism (M: kcal/day) can be 
calculated using Kleiber’s (1961) formula 

M = 70~0.~5 > (8) 

where W is a moose’s weight in kilograms. Moen (1974) and Gasaway and 
Coady (1974) assume that an animal’s maintenance (MM) and reproductive 
(M,) metabolic requirements can be presented as a multiple of M; using 
their values for these multiples, I estimated: 

(1) MM for bulls and cows is 1.8 times M; 

(2) MR for bulls and barren cows is 2 times M, since an energy reserve 
is required for the fall mating; 

(3) MR for cows with calves is 2.7 times M, primarily because of the 
energetic costs of lactation. 

NM and NR: A moose’s sodium demand was measured by accounting for a 
moose’s output of feces, urine, body growth, fat deposition, reproduction, 
and lactation (Belovsky, 1977); and then multiplying by the appropriate sodium 
content. Although this does not necessarily provide the minimum amount of 
sodium required by a moose, we can say that since a moose is losing this 
quantity of sodium it must replace this amount to remain in steady state. 
Furthermore, this sodium measure may be a minimum quantity, since Botkin 
et al. (1973) have shown sodium to be exceptionally rare at Isle Royale. 

For an average moose at Isle Royale (358 kg), it was found that a bull or a 
barren cow requires 1.34 g/day of sodium during the summer to satisfy its 
annual maintenance requirement, since aquatics, the only source of sodium, 
are available only in summer (Belovsky, 1977). A bull or a barren cow requires 
1.88 g/day of sodium to satisfy reproduction requirements, while a cow with 
calf requires an additional 1.18 g/day/calf of sodium (Belovsky of 1977). Since 
the aquatic vegetation consumed by moose is 0.00295 g-Na+/g-dry wt, these 
sodium requirements become 454 g/day of aquatics for maintenance, 636 g/day 
for a bull or barren cow’s reproduction, and an additional 401 g/day of aquatics 
for each calf a cow is raising. Assuming that sodium requirements are a constant 
fraction of body weight (Church et al., 1971) and the sodium expenditure 
for a calf is constant because of some minimum to ensure calf survival, we can 
write sodium demand (g-dry wt of aquatics/day) as 

NM = (1.27 g/day/k)(W) (9) 

for both sexes, 

Na = (1.78 .dWkW) (10) 
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for bulls and barren cows, and 

~VR = (1.78 &WkW’) + (401 g/day/calf)(Y), (11) 

for cows with young, where Y is the number of calves. Since cows do not 
generally grow or deposit fat, while lactating (Knorre, 1959) the N, value 
can be reduced by this unrealized increase in tissue: 

Nn = (1.27 g/day/kg)( IV) + (401 g/day/calf)(Y). (14 

R: The last parameter required for the model is the amount of food 
processed each day in the rumen, as a function of the moose’s weight. Values 
for the wet weight of food in the moose’s four stomachs and the weight of the 
moose were taken from the literature (Egorov, 1964; Schladweiler and Stevens, 
1973; unpublished data from Isle Royale). To convert these stomach values 
to wet weight of food only in the rumen, the first stomach, Short’s (1964) 
study of deer (Odocoileus virgin&us) rumen development was applied to 
moose, such that: 

(1) A moose weighing less than 100 kg is assumed to have a rumen which 
composes 44% of the entire stomach, 

(2) a moose weighing between 100 and 200 kg has a stomach which is 
62:/, rumen, and 

(3) a moose weighing 200 kg or more has a stomach which is 75:/, rumen. 

To convert the weight of food in the rumen into the daily quantity processed 
by the rumen, one needs to know the turnover time. This turnover time was 
estimated to be 1.14 (24 hr/21 hr) f rom Mautz’s (1971) radioisotope study of 
deer digestion. 

Since it was found that a cow moose has a stomach which is 1.2 times larger 
than that of a bull of the same size (Egorov, 1964; Schladweiler and Stevens, 
1973; unpublished data from Isle Royale), the daily quantity of food processed 
by the rumen was standardized by dividing female values by 1.2. These 
standardized values are then regressed against body weight: 

R = 35047log,, W- 57993 (13) 

(T = 0.96, N = 21, P < 0.01). Th ere ore, f Eq. (13) can be used to compute 
the daily quantity of food processed by a bull’s rumen, while a cow’s value 
is 1.2 times the bull’s. 

All constraint values (MN , M, , NM , N, , TA , T= , R) are summarized in 
Table II and all parameter values (ti , Bi , Kj , Di , Si) are shown in Fig. 1. 
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TABLE II 

A Summary of the Constraint Values Used in the Moose Feeding Model 

Constraint 

MM (kcal/day) 

MR (kcal/day) 

NM (g-dry wt of 
aquatics/day) 

NR (g-dry wt of 
aquatics/day) 

TA (min/day) 

TT (min/day) 

R (g-wetwt/day) 

Bull 

126W”.‘s 

14OWQ.75 

1.27w 

1.78W 

150 

256 

35,047loglow - 57,993 

Barren cow Cow with calf 

126W”.‘5 126W”.‘5 

14owo.75 189W”.‘5 

1.27W 1.27W 

1.78W If growing: 
1.78W + 4OlY 

Nongrowing: 
1.27W + 401Y 

150 150 

256 256 

42,05610gloW - 69,592 

358 kg. 

Di:DICESTIBILTY: 94 72 86 p: ,(4.8X.86 - Ol,F 

Si:*IO”E*E*T : 03 .Ol .01 *cwg 

FIG. 1. A presentation of the food characteristics and constraints used to model 
optimal foraging for an average adult moose. The constraint equations used in the linear 
program appear on the right side of the figure. (The R value is an average R for moose 
weighing between 300 and 400 kg, using the data employed to calculate the R-W equation 
in the text). 



DIET OPTIMIZATION IN THE MOOSE 11.5 

RESULTS AND DISCUSSION 

The optimization model for moose feeding is solved for three situations 
of increasing specificity, each with different constraints: (1) average Isle Royale 
moose’s feeding, (2) feeding of average bull, barren cow, and cow with calf, 
and (3) feeding changes with changes in body size. This scheme starts with 
the simplest model and proceeds to the most complex. 

: 
D. ’ 

4- - .~,,$Y... I ,..- 
,. . . . . ..” ,.-’ r .-. ,,,.::,,. /+:1....,...’ ,..’ 

t 

;:/q;:::,,+J 
,..’ ,.: 

_..’ 
,,,,j(._. ..-” 

,... _/ 
G 8 .I’. - 4 ,.y ” 
2 

,..’ 
,. .’ 

i 
I 

,..’ ,_.’ C. ,..’ _..’ ,..’ 
/ /.... /” 

FIG. 2. The linear program constraints solved for a 358-kg average adult moose. The 
pairwise solutions for food classes appear in (A), (B), and (C). Each of these graphs 
represents the solution of the linear programming constraints, assuming that the third 
food class is not consumed. Figure 2D presents the three-dimensional portrayal of the 
solution for all food classes simultaneously (each of the pairwise graphs represents x-y, 
y-z, or x-z planes). The area or volume encompassed by solid lines represents the set 
of feasible diets satisfying the moose’s maintenance requirements, while the darkened 
region also satisfies reproductive needs. The symbols describing the various constraints 
are defined in Table I. Point A, the energy maximizer, comes the closest to the observed 
behavior of moose in the wild. 
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Average Isle Royale Moose 

The average Isle Royale moose is assumed to weigh 358 kg, is 50% bull 
and 50% COW and in terms of reproduction, it is 54% with calf and 46% bull 
or barren (due to twinning in the population) (Jordan et al., 1971). The reason 
for choosing to work with such a hypothetical animal is that the observed 
diet for an Isle Royale moose was measured for an average individual (amount 
of food removed/day/area divided by the number of moose/area (Belovsky 
and Jordan, 1978)). Th ere ore, f to be able to compare the observed diet with 
that predicted by the model, we must work with the hypothetical average 
individual. 

Figure 1 presents the constraint equations for our average moose and their 
graphical solution appears in Table II. The graphical solution is presented 
in a pairwise manner, assuming that the third food class is not consumed 
(Figs. 2a-c). Regions surrounded by solid lines represent combinations of the 
two food classes which supply maintenance requirements, while darkened 
regions provide reproductive requirements. The two-way representation shows 
that: 

(1) aquatic plants must always be consumed to supply sodium requirements, 

(2) forbs and aquatic plants cannot satisfy reproductive energy requirements, 
because of the amount of time it takes to crop forbs and the bulkiness of aquatics 
which fill the rumen; and 

(3) deciduous leaves and aquatics can supply both maintenance and 
reproductive requirements, which indicates that some quantity of deciduous 
leaves must be consumed for reproduction, since they are less time consuming 
to crop and less bulky than forbs. 

These are interesting results, since they point out that aquatics must be 
consumed to supply sodium, but deciduous leaves, the food with the lowest 
dry weight gross caloric value, are the main and essential source of reproductive 
energy. 

Each of the two-way solutions for the constraint equations can now be 
combined into a three-dimensional solution, where each two-way solution 
represents the x-y, y-z, Z-X planes (Fig. 2d). The corners of the darkened 
volume must now be tested to determine which provides the energy maximized 
diet and the time minimization diet. It is found, using the linear programming 
algorithm, that point A represents the energy-maximized diet and point B, 
the time-minimized diet. The quantities of each food class in these diets appear 
in Table III, along with the observed diet. 

Although the energy-maximized diet appears to be closer to the observed 
diet in every class, than does the time-minimized diet, one would like to make 
some statement about the relative closeness of fit. Two methods can be 
employed if we ignore the potential error in the predicted consumption values 
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TABLE III 

The Predicted Diets (Energy Maximized and Time Minimized) for an 
Average Isle Royale Moose Compared with the Observed Food Consumption” 

Energy maximized Time minimized Observed 

Aquatics 853 (17.8%) 958 (21.8 “;b) 868 (17.7 %) 

Deciduous leaves 3585 (75.0%) 3435 (78.2 “/6) 3656 i 81 (74.676) 

Forbs 342 (7.2 %) 0 (0 %) 374 (8.0 %) 

Energy intake (kcal/day) 15,458 14,000 15,861 

Feeding time (miniday) 299 254 307 

a All food consumption values are measured in g-dry wt/day and the values in paren- 
theses are the percentages of each food in the diet. 

which will be examined in detail in a later section. First, a x2 goodness-of-fit 
test can be used to compare the predicted with observed diet. This was done 
by first converting the predicted and observed diets from units of grams con- 
sumed per day to bites per day, as a discrete unit is required for a x2 test 
(aquatics: 0.10 bites/g; leaves: 0.68 bites/g; forbs: 3.34 bites/g). Using the frac- 
tion of the predicted diets composed of aquatic and terrestrial plants (forbs 
and leaves combined, since the time minimization diet predicts no forb intake), 
one can compute the expected quantity of each food class in the observed 
diet based upon the total measured food consumption (1194 bites/day). Then 
by knowing the density of moose (no./m2) and sample area for each food type 
(m2), a predicted quantity of food consumed can be calculated and compared 
with the observed food removed (Belovsky and Jordan, 1978). This test shows 
that the time-minimization diet is significantly different from the observed diet 
(x2 = 152.80, df = 1, P < 0.005), while the energy-maximization diet is not 
significantly different from the observed diet (x2 = 0.42, df = 1, P < 0.55). 
These x2 tests assume that the bites in each food class are equivalent, which 
may or may not be the case; but the tests serve as one of the two ways of com- 
paring the model with the observed feeding in a somewhat objective manner. 

Second, a t test can be used to test whether or not the predicted consumption 
of deciduous leaves is significantly different from the observed mean consumption 
with its standard deviation. This test indicates that the time-minimization 
diet is almost significantly different (t = 2.37, P < 0.15) while the energy- 
maximization diet is not significantly different (t = 0.76, P < 0.65). Therefore, 
in each of the two tests, the energy-maximized diet is not significantly different 
from the observed diet, while in at least one case, the time-minimization diet 
is significantly different from the observed. This provides evidence that a 
moose forages in an energy-maximizing manner. 
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If moose do maximize the energy in their diet, then several important points 
become evident. First, the synthesis of time, sodium, and rumen processing 
constraints leads to the inclusion of all three food types in the moose’s diet. 
Second, the energy-maximizing diet would provide 11 yO more energy than 
required for reproduction metabolism and only 3% of the diets providing 
maintenance requirements also satisfy reproductive needs. Therefore, this 
limited feeding flexibility would seem to suggest that moose cannot afford 
very much error in their behavior or environmental variation; this may account 
for the very small coefficient of variation observed for the consumption of 
deciduous leaves, 2.2%. 

Sex Digerentiation 

The next step is to distinguish between cow moose with calves and adults 
expending little energy and minerals for reproduction; i.e., males and barren 

TABLE IV 

The Predicted Diets of Moose (358 kg) of Different Reproductive 
States Compared to the Observed Food Consumption (g-dry wt/day) 

Energy maximizer Time minimizer Observed 
.__ 

Bull 
Aquatics 642 978 655 
Deciduous leaves 4267 2586 (3967) 

(2791) 
Forbs 0 0 150 

Cow with calf 
Aquatic 
Deciduous leaves 

Forbs 

1038 1038 1081 
3191 3506 (2910) 

(2910)b 
538 252 598 

Barren Cow 
Aquatic 
Deciduous leaves 

Forbs 

941 1379 1081 
4277 2078 (2910) 

(1634) 
0 0 598 

a The values in parentheses are estimated deciduous consumption values, with the 
first representing the intake if the moose is an energy maximizer, and the second the 
intake if the moose is a time minimizer (see text for further explanation). 

b The energy-maximizing and time-minimizing solutions are the same since neither 
satisfies the cow’s 15,555-k&/day requirement. Approximately 60 g of leaf intake is 
required above what the rumen can hold. This indicates that the 1081-g intake of aquatics 
may be a slight overestimate. 
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cows. Substituting the sex and reproductive specific constraint values (Table II) 
for the average values in Fig. 1, still using a 358-kg individual, we can solve 
the model for the two alternative goals: energy-maximizing diet and time- 
minimizing diet. Although cows with young bear the brunt of increased dietary 
requirements (energy, sodium), they also possess larger rumens than do bulls. 
This enables the cow to compensate for the added sodium demand, satisfied 
only by bulky aquatics. The predicted diets for each of the three demographic 
classes (bull, barren cow, cow with young) and their observed diets appear 
in Table IV. 

It is much more difficult in this case to compare the predicted and observed 
diets, since the observed diets are known only for aquatics and forbs. Deciduous 
leaves are absent from the observed diets since these are eaten primarily at 
night in thick cover; so it is impossible to determine the ratio of time spent 
by males feeding on leaves to time spent by cows, as was done for the other 
food classes (Belovsky and Jordan, 1978). Nevertheless, on the basis of a limited 
observed diet, it appears that: 

(1) Bulls are energy maximizers, since their aquatic consumption is very 
close to that predicted in the energy-maximized diet and aquatics are the least 
costly food to crop in terms of time, which would indicate a greater consumption 
of this food if the moose minimized feeding time. Forbs, on the other hand, 
fit either goal equally, since both predict that this food should not be consumed. 
But the fact that forbs have the highest energy content may suggest that some 
consumption, as observed, fits an energy-maximizing strategy. In addition, 
I have observed moose feeding on herbaceous plants, the only food in reach, 
while bedded. If this were the case, then periods of inactivity may not be totally 
food-free and an energy-maximizing moose would be expected to consume 
the small quantity of herbs surrounding its beds. Bulls may be energy maximizers 
by necessity since they lose up to 17% of their body weight during the fall 
breeding season and consequently require an energy reserve from their summer 
feeding. 

(2) Cows with young appear to be energy maximizers, since the predicted 
forb consumption for energy maximization agrees very well with the observed 
consumption, even though forbs are the most costly to feed on in terms of 
time. Aquatic consumption, however, fits either goal equally well, since the 
two diets predict the same consumption of this food. 

(3) Barren cows have an observed diet which is identical with that for a 
cow with calf, even though both predicted diets deviate substantially from 
the observed. It is thought that barren cows and cows with calves have identical 
diets, since no statistical difference between the two could be found and their 
respective diets differ by less than 0.1%. For these reasons, their diet data 
were combined (Belovsky and Jordan, 1978). This suggests that a cow moose 
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always feeds in a manner which is consistent with the presence of young, even 
though she may be barren. Therefore, cows are either “programmed” for the 
bearing of and caring for young or they anticipate future pregnancies and store 
sodium and energy. 

The observed and predicted diets can be compared in a second way, by 
estimating deciduous consumption. This is done by two methods: 

(1) If the moose is an energy maximizer, it should fill its rumen, which 
allows us to compute deciduous intake as the rumen processing capacity (R) 
less the known bulk intake of aquatics and forbs. 

(2) If the moose is a time minimizer, it should feed until it satisfies its 
energy requirements, in which case the deciduous intake is computed as the 
difference between the daily energy requirements (Ma) and the energy supplied 
by the known consumption of aquatics and forbs. These estimates of deciduous 
consumption appear in Table IV in parentheses. We can then use a x2 goodness- 
of-fit test to compare the observed and predicted diets, as was-done in the 
average moose analysis. In this case, however, the predicted removals by bulls 
and cows with calves are combined and divided by 2, since the sex ratio is 1:l. 
This is required, since the observed consumption (bites/m2) could not be 
allocated to each sex (Belovsky and Jordan, 1978). This allows us to compare 
a predicted utilization of the plants in the environment with the observed 
utilization and various combinations of each sex’s strategies leads to different 
predicted utilizations. 

If bulls and cows are both energy maximizers, the observed and predicted 
utilizations are not significantly different (x2 = 3.01, df = 1, P < 0.09); 
however, all other strategy combinations do differ significantly from the observed 
consumption (bull time minimizer-cow time minimizer: x2 = 7.04, df = 1, 
P < 0.006; bull time minimizer-cow energy maximizer: x2 = 13.34, df = 1, 
P < 0.005; and bull energy maximizer-cow time minimizer: x2 = 31.54, 
df = 1, P < 0.005). Therefore, it appears that both males and females attempt 
to maximize their energy intake during the summer. 

It appears, at least superficially, that bulls and cows with young are energy 
maximizers rather than time minimizers. If this is true, several points can 
be made. First, if a cow with a calf is to achieve its energy requirements, it 
must include forbs in the diet, since a diet of deciduous leaves alone will not 
provide sufficient energy. Second, bulls and barren cows have great flexibility 
in their feeding, since 35% of a bull’s diet combinations permit reproduction, 
while 44% of a barren cow’s provide for reproductive requirements. On the 
other hand, less than 2% of the potential diet combinations of a cow with calf 
permit the successful rearing of young; it is no wonder that over 60% of the 
calves perish each year (Jordan et al., 1971). This may also explain why 
a barren cow chooses a diet identical to that chosen by a cow with calf, as a 
means of storing sodium and energy for future calf production. 
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Body Size Variation 

The final level of complexity to be added to the model will be changes in 
optimal foraging with body weight. By examining changes in net energy intake 
with changes in body size, one might hope to ascertain whether there exists 
an adult size which leads to a maximum net energy intake and whether size 
at weaning and size at first reproduction depend upon feeding capabilities. 
Also, there may exist a maximum body size for moose, beyond which feeding 
does not satisfy energy and sodium requirements. The premise employed here 
is that energy intake is an important determinant of a moose’s capability of 
surviving and reproducing and therefore, body size which influences feeding 
should be linked to life history parameters. By comparing the various observed 
body sizes at different stages of the moose’s life history to those predicted 
on the basis of net energy intake we can determine whether or not feeding 
is an important factor. 

Hozc the model is varied. By allowing each of the constraint values for 
M M 2 Jf, , NM , Ns , and R to become continuous functions of body size 
(Table II), we can begin to modify the model. Several simplifying assumptions 
were made and were later tested to determine their validity: 

(1) Forbs and deciduous leaves were combined into a single food class, 
terrestrials, which is composed of 9% forbs and 91 O/O leaves, based upon 
the previously presented energy-maximized solutions. And all terrestrial 
traits are weighted averages based upon these values (Table V). 

TABLE V 

The Food Parameters Obtained by Combining Deciduous Leaves and 
Forbs into a Single Class, Terrestrials 

BT = 4.04 g-wet wt/g-dry wt 

KT = 4.25 kcal/g-dry wt 

DT = 13:h 

ST = 0.01 kcal/g-dry wt 

TV = 0.065 min/g 

(2) Changes in daily feeding time and cropping rates with body size were 
assumed to occur at the same rate. This allows us to ignore these variations 
and to treat TA , TT and ti as constants, since the changes with size would 
cancel. Furthermore, if this is the case and we utilize the assumption which 
combines the deciduous leaves and herbs into a single food class, then the time 
constraint can be dropped since it is already operating implicitly in the deter- 
mination of the relative proportions of leaves and herbs in the diet. 
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(3) The model was only solved for energy maximization, since all observed 
diets in previous sections compared the best with the predicted energy- 
maximized diet. Finally, for simplicity, the model was solved graphically. 

From the parameters in Table II, an equation can be constructed to measure 
a moose’s net energy intake. The daily rumen processing capacity (Ii) less 
the bulk of aquatic intake needed to supply sodium demands determines the 
rumen capacity remaining for terrestrial intake (I): 

I = R - B1(NR), (14) 

where N, is the appropriate equation from Table II and B, is the bulk constant 
for aquatics. Using the quantity, I, we can determine the energy supplied by 
terrestrials (TE): 

TE = WWT - WIBT , (15) 

where BT , KT , D, , and Sr are the terrestrial’s bulk, gross caloric content, 
digestibility, and energetic cost to crop, respectively. Adding to the energy 
intake from terrestrials (TE) the energy supplied by aquatics, we obtain the 
total net energy intake by a moose (NE): 

NE = TE + N,(K,D, - S,). (16) 

By combining Eqs. (14)-(16) d an using the parameters in Tables II and III 
and Fig. 2, we obtain 

NE = ~(35047 log,,W - 57993) - (20g-wet wt/g-dry wt)(Na) 
4.04 g-wet wt/g-dry wt 

. 3.09 kcal/g + (3.82 kcal/g)(N,), (17) 

where s is 1 for bulls and 1.2 for cows. 
The calculation of a moose’s NE at a specific weight, sex, and reproductive 

state enables us to compare this value with the animal’s weight specific Ma 
(Table II). If NE is greater than or equal to Ma , the moose is capable of 
surviving since it can satisfy its energy demands; otherwise, it perishes. Further- 
more, when NE equals Ma , we have found either a moose’s maximum or its 
minimum body size. Figure 3 contains the comparison of the NE and Ma 
functions for bulls and barren cows, while Fig. 4 shows the relationship for 
cows with calves. The differences in the NE functions for bulls and barren 
cows are due to the sex specific differences in rumen volume. 

By solving the NE equations for the critical weights at which NE equals 
M, , we can determine when individuals should be capable of self-sufficiency. 
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These critical points are satisfied by the equations 

26806 log,, W - 44356 - 20.4W = 140W”.7S 

for bulls, 

32167 log,, W - 53227 - 20.4W = 14OW”.‘j 

for barren cows, 

32167 log,, W - 59361 - 20.4W = 189W”.= 

for growing cows with a calf, and 

32167 log,, W - 59361 - 14.6W = 189W”.75 
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(18) 

(19) 

(20) 

(21) 

for nongrowing cows with calves. Finally, the assumptions (see above) used 
in constructing these simplified models can be tested by comparing the simple 

NE-Barr=n~w------a-- 
_/--- 

BODY WEIGHT - KG 

FIG. 3. A graphical determination of a bull’s and a barren cow’s body weight at 
weaning, a bull’s optimum size, and a bull’s maximum body weight. The optimum body 
size for the cow is presented, but the maximum cow size is not relevant since the cow in 
this case is barren and moose cows in the wild generally bear young. The NE and MR 
functions are defined by the formulas in the text. The intersections of the net energy 
curves (NE) with the energy metabolism curve (Ma) define maximum and minimum 
body sizes. If the NE curve lies below the MR curve, the moose perishes since it cannot 
satisfy its energy and sodium demands. The body weight at which the NE curve lies the 
greatest distance above the MR curve defines the optimum body size. The sizes at weaning 
are 62 kg for cows and 67 kg for bull’s, since below these weights the moose cannot 
satisfy their energy and sodium demands without a nutritional supplement, milk. Bulls 
have an optimum body size of 250 kg and a maximum size of 645 kg. The barren cow 
has an optimum size of 307 kg. 
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FIG. 4. A graphical determination of a cow with calf’s minimum, optimum, and 
maximum body sizes. The NE and Ma functions are defined by the formulas in the text. 
The intersections of the net energy curve (NE) with the energy metabolism curve (Ma) 
defines the maximum and minimum sizes. If the NE curve lies below the MR curve, the 
moose perishes since it cannot satisfy its energy and sodium demands. The body weight 
at which the NE curve lies the greatest distance above the MR curve defines the optimum 
body size. A cow can satisfy her energy and sodium demands along with those of her calf 
at a weight of 141 kg, if she forgoes her own growth, and 167 kg, if she continues to grow. 
Cows have an optimum body weight of 285 kg and a maximum of 514 kg. 

models’ results for energy intake with those obtained from a detailed solution 
of the linear programs at different body sizes. The energy intakes predicted 
by the energy-maximizing linear programs are very close to those obtained 
from the simplified equations (deviation less than 9%) and the simplified 
form generally provides a larger value. 

We can also find the optimum body size which allows the moose to feed 
at the greatest surplus of energy over the Ma value. This body size should 
provide the moose with the greatest possible survival and reproductive output, 
since the moose will have the greatest amount of energy for producing young 
and fat storage. This body size can be found by setting the derivative of the 
function, NE - Ma , with respect to body weight, equal to zero: 

d/dW (NE - MR) = 0. 

The derivatives of Eqs. (18)<21) with respect to W and set equal to zero have 
the general form 

c1(log,, e)(l/W) - c2 - c,(O.75)W-0.25 = 0, 

where c1 , c2 , and c3 are the specific constants from Eqs. (18)-(21). 
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Size at weaning. In Fig. 3, the MR function is intersected for the first 
time by the NE function at 62 kg for barren cows and 67 kg for bulls. Below 
these weights, the moose is unable to satisfy its energy demands and take in 
sufficient aquatic macrophytes to fulfill its sodium requirements. The model 
asserts that the moose should not be able to survive unless it attains a nutritional 
supplement high in sodium and energy. The supplement comes in the form 
of a moose cow’s milk. Data obtained from Knorre (1959) show that a calf 
weighs on the average 11.2 kg at birth and gains 0.25 kg/day during its first 
month of life, 0.55 kg/day in the second, 0.90 kg/day during the third, and 
1.2 kg/day during the fourth. Using these figures for calf growth and assuming 
that all calves are born on June 1, the midpoint of the calving season, we 
calculate that a calf should attain a weight of 62 to 71 kg in early September 
(Sept. l-7). At this time, the calf should be independent of its mother’s milk 
as a nutritional supplement. Knorre (1959) claims that weaning of moose 
calves occurs in early September. This indicates that this important life history 
event depends upon the calf’s ability to feed itself and obtain sufficient sodium 
on its own. 

Size at first reproduction for cows and their optimum size for feeding. In 
Fig. 4, the NE functions of a cow with calf and a cow with twins are compared 
to the M, function of a cow with a single calf. The first intersection of the 
NE and M, lines of a cow with a single calf occurs at 141 kg for nongrowing 
cows and 169 kg for growing cows. The reason for this much higher intersection 
than the already stated 62 kg for barren cows arises from a greater aquatic 
intake needed to supply sodium to calves. Knorre (1959) cites data on domestic 
moose in Siberia which indicate that a cow moose will not reproduce, regardless 
of her age, unless her weight is from 292 to 335 kg. Therefore, it appears 
that the age at first reproduction for a cow depends upon some critical weight. 
However, the comparison of the NE and M, functions shows that the size 
at which a cow can first successfully bear a calf is much smaller than this 
empirical size. 

By referring to Fig. 3 again, one can see that the optimum body size for a 
barren cow is 307 kg; in Fig. 4, it is 285 kg for a nongrowing cow with calf. 
The first of these optimal sizes falls within the range of body weights for a 
cow’s first reproduction presented above, and the second just misses. This 
indicates that cows begin to reproduce only when they have first maximized 
the energy available to them. Furthermore, it is interesting that the average 
weight asymptotically approached by cows with calves is 330 kg and by barren 
cows, 370 kg (Skuncke; vide Peterson, 1955). These weights are very close 
to the optimum sizes predicted, indicating that growth either terminates or is 
negligible after the optimum is reached. The reason for this delay in female 
reproduction, until net energy intake is maximized, will be analyzed in a later 
paper. 
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A COW’S ability to twin. At no point in Fig. 4 does the NE line for cows 
with twins intersect the iVIa line for a cow with a single calf. This indicates 
that a COW cannot successfully raise twins unless she was barren the previous 
year and had stored an excess of sodium from aquatic feeding. The above 
result explains why it is beneficial for barren cows to consume a quantity of 
aquatics that is greater than the amount required to supply the necessary 
sodium. This assertion could be tested if we had information on whether 
or not cow moose can successfully raise twins in consecutive years, but this 
information is not available. Also, this result explains why cows that bear 
twins generally lose one of the young in the first two months after parturition. 

Optimum body size for bulls and their size at first reproduction. Bull moose 
present an anomaly. The optimum bull size is 250 kg, which is smaller than 
that predicted for cows. But, it is a well-known fact that bulls are larger than 
cows, a case of sexual dimorphism. As is characteristic of all cervids (Trivers, 
1972), bulls compete with each other for mates. Knorre (1959) provides data 
which indicate that the bull which physically intimidates its opposition achieves 
a greater number of mates. Therefore, bulls may become larger than the optimum 
feeding size, as a result of sexual selection. This will be examined further 
in a later paper. 

Bulls are known to become sexually active when they have attained a weight 
of 300 kg (Knorre, 1959), which is close to the optimum body size predicted 
in Fig. 3. This indicates that bulls may maximize their survival before they 
begin to reproduce, which is the same strategy employed by cows. In this 
case, however, maximum reproductive success does not accompany maximum 
net energy intake since bulls compete for mates and success depends upon 
the relative body sizes of the competitors. The fact that bulls on the average 
approach a weight of 450 kg (Sk uncke; vide Peterson, 1955), which is larger 
than the size for optimal feeding, may be due to the above-mentioned sexual 
selection. Furthermore, they can achieve this size because their feeding con- 
straints enable them to reach maximum weights greater than those of reproducing 
females (645 kg vs 514 kg; see next section). 

Maximum body sizes for moose. It is interesting that bulls in Fig. 3 and 
cows in Fig. 4 show a second, higher intersection of the NE and MR curves. 
The second point of intersection predicts a maximum weight, beyond which 
the moose is unable to satisfy its MR requirements. This maximum is approxi- 
mately 645 kg for bulls and 514 kg for cows with calves. The higher intersection 
for barren cows in Fig. 3 is ignored, since cows generally bear calves after 
they reach 300 kg in the wild. The upper limit for bull size compares favorably 
with the maximum recorded weight for a bull from Ontario, 630 kg (Peterson, 
1955). Although there exist only a few records of cow moose weights, since 
hunters are generally concerned with the larger bulls, the largest female record 
found was 447 kg from Sweden (Skuncke; vide Peterson, 1955). 
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The trends observed for minimum, maximum, and optimum body sizes in a 
population are similar to Schoener’s (1969b) hypothesis concerning body size 
selection for feeding. To determine the impact of food availability upon body 
size, food quality, or quantity, changes can be approximated by raising or 
lowering the Ma line, but keeping it parallel to the original function (see 
Schoener (1969a) for a detailed discussion of this technique). In this way, 
Schoener’s (1969b) argument that as food diminishes in an animal’s environment 
(Ma is raised) large consumers are selected against faster than small consumers 
is substantiated. This is predicted here, however, without making Schoener’s 
(1969b) assumption that food for large animals is rarer than food for small 
animals. 

Sensitivity of the Model to Perturbations 

There exist two ways to test the model’s sensitivity; vary the parameters 
to determine how the solution changes and apply the model to moose in a 
different environment. First, we can vary the constraint values (Na , TT , TA , R) 
to see how they affect the solution for the energy-maximized diet, since this 
predicted diet was found to come closest to the observed moose feeding behavior. 
For simplicity, this sensitivity analysis will be restricted to the average moose 
model, the least complex case. Leaves and forbs will be combined into a single 
food class for convenience, since the two-dimensional optimization model is 
much easier to solve than the three-dimensional case (Figs. 5A-D). By sim- 
plifying this model, we find: 

(1) A unit change in Na creates a decrease of 4.95 g-dry wt in terrestrial 
consumption as Na increases from the constraint used above (853 g) to 938 g. 
Any further intake of aquatics above 938 g will lead to the moose’s failing 
to satisfy its energy requirements because of the rumen constraint. If Na 
declines below the 853-g constraint used in the model the energy-maximized 
diet will not change since the linear programming solution is found at the 
intersection of the R and TT constraint lines. Therefore, changes in Na affect 
the problem (maintaining a biologically feasible solution) only in the range 
of 853 to 938 g (Fig. 5A). 

(2) A unit change in TT creates a change of 15.4 g-dry wt in terrestrial 
consumption until 938 g of aquatics is consumed (the greatest aquatic con- 
sumption still permitting MR to be satisfied) or until the R, T, , and N, 
constraint lines all intersect at the same point, at which point TT no longer 
acts as a constraint. Therefore, TT can only vary over the range of 228 to 258 min 
and still have the model feasible (Fig. 5B). 

(3) Changes in TA are of little consequence, since it is much larger than 
the time required by a moose to satisfy Na . Furthermore, if TA were to enter 
into the problem (TA equal to the time required to crop Na), it would have 
to decrease by more than 55% (Fig. 5C). 
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TERRESTRIAL CONSUMPTION - g 

FIG. 5. Two-dimensional plots (aquatic plant consumption and terrestrial plant 
consumption; herbs and leaves combined; see text) of the diet linear programming 
constraints for an average adult moose are presented. In each graph one of the four con- 
straints (NR in (A), TT in (B), TA in (C), and R in (D)) involved in determining an energy- 
maximizing diet is allowed to vary until it no longer affects the solution to the model. 
The dashed lines represent the maximum variations in the constraint (noted also by a A 
over the appropriate constraint symbol). The regions containing feasible solutions for 
the diet model, when the constraints are unaltered, are darkened, while any additional 
feasible diets arising from the variations in the constraints are denoted as striped regions 
(see the section on the model’s sensitivity for a complete discussion). 

(4) A unit change in R leads to a change of 0.05 g-dry wt in aquatic con- 
sumption, as long as the aquatic consumption is greater than Na , since the 
T,-R constraints appear to determine the energy-maximized diet. However, 
when the N,-R constraints determine the diet, terrestrial consumption changes 
by 0.25 g-dry wt/g-wet wt in R (Fig. SD). 

Variations in the Na and TT constraints lead to the greatest per unit change 
in the diet. However, if Na and TT are only allowed to vary separately, their 
total maximum effect on terrestrial consumption is an 11 y0 decrease with an 
increase in NR or a decrease in TT and a 1 o/o increase when TT is increased. 
Although changes in R have the smallest per unit effect on terrestrial consump- 
tion, variation in this constraint has the greatest potential cumulative effect 
since R can vary over a very large range. Of all the constraints, R is the only 
one for which we have confidence intervals (95%) and these (+2513.00) 
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rule out this constraint from any important variation at any given body size 
(variation in terrestrial consumption less than 16%). 

As mentioned above, the confidence intervals for the constraint values are 
unknown, except for R. If we could vary the constraints within their confidence 
intervals, as was done above for R, a much better picture of sensitivity could 
be achieved. In this way, we could also determine the maximum deviation 
from the model’s predictions if all of the constraints varied simultaneously. 
Nevertheless, the above discussion does provide us with a feel for the accuracy 
of the model’s predictions. Finally, variations in the constraints appear to 
maintain the energy-maximizing strategy as the better description of the observed 
diet, except when the energy-maximizing and time-minimizing solutions are 
the same. 

Changes in the parameters in the constraint equations, other than the 
constraint values, would have to be larger than the confidence intervals (95;,,) 
presented in the data section before any large changes in the predicted diet 
would be observed. Therefore, I conclude that, although a linear program 
model could be very sensitive to parameter changes; this model’s parameter 
values, given their confidence intervals, are unlikely to account for large 
deviations in the predicted diets. 

The second means of testing the model is to use it to predict an average 
moose’s diet in a different environment. This was done for an Isle Royale 
forest bordering Lake Superior, with a canopy dominated by Abies balsamea 
and Betula papyrifera. In this environment, moose need only consume 
172 g-dry wt of aquatics each day to satisfy their sodium demand (Na), since 
the aquatics average 0.0146 g of Na+/g-dry wt (Belovsky, 1977). These aquatic 
plants, however, are bulkier (B, = 92.1 g-wet wt/g-dry wt) and require more 
time to crop (tl = 0.21 min/g-dry wt) than those already used in the model 
(Belovsky and Jordan, 1978). Solving the model for deciduous and aquatic 
consumption, since forb feeding in this forest was not studied (Belovsky and 

TABLE VI 

The Predicted and Observed Diets for an Average Isle Royale Moose in an 
Environment Different from the First Examined” 

Aquatics 

Deciduous leaves 

Energy maximizer Time minimizer” Observed 
-. ___-____ __-. 

172 - 161 

4267 - 4609 

n All food consumption values are presented in terms of g-dry wt/day, and forbs and 
leaves are combined into a single class, terrestrials. 

b There exists no solution to the time-minimized diet, since even the energy-maximized 
diet is 499 kcal/day less than hl, . 
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Jordan, 1978), we find that there exists no solution to the time-minimized diet, 
since even the energy-maximized diet is 499 kcal/day less than Ma . The 
inability of the predicted diets for this new area to supply a moose’s M, 
requirements may arise from applying the original parameter values to this 
different forest. One suggestion is that the moose have more time to feed in 
this forest bordering Lake Superior because of the cooler summer climate; 
this would provide a greater daily terrestrial consumption. Another factor 
leading to this discrepancy could be that herb feeding was not studied in this 
region. Nevertheless, the energy-maximized diet is not significantly different 
from the observed food intake (x2 = 3.25, P < 0.08) (Table VI). Therefore, 
it appears that the model succeeds in predicting a moose’s diet in a completely 
different environment, which suggests that we initially chose the important 
constraints for moose feeding. 

CONCLUSION: RELATION OF THIS MODEL TO OTHER FORAGING MODELS 

This paper demonstrates that a large generalist herbivore, the moose, feeds 
in a manner which is predicted by an optimization model. Using a series of 
constraints imposed upon the animal’s feeding capabilities, one may predict a 
precise optimal diet combination and compare it to the observed behavior 
of the animal. This approach differs from those taken in several other feeding 
strategy analyses. In contrast to the Freeland and Janzen (1974) argument, 
the feeding of a generalist herbivore can be analyzed without reference to 
toxins, innate desires for diet diversity (this will be further substantiated in a 
later paper), and specific coevolutionary interactions. This enables one to treat 
the herbivore’s feeding in a precise, rigorous manner, comparable to the 
carnivore models (Schoener, 1969a,b, 1971; MacArthur and Pianka, 1966; 
MacArthur, 1972; Cody, 1974; Emlen, 1966; Pulliam, 1974). However, these 
carnivore models assume simultaneous searches for all food classes, which 
does not occur for the moose and most likely many large herbivores. The 
ability to use linear programming for such herbivores is a result of the separate 
search patterns for each food class. Finally, although Westoby (1974) suggests 
the use of linear programming in the analysis of herbivore feeding, he assumes 
that the combination of foods in the diet needs to be optimized with respect 
to many nutritional constraints; whereas the model presented in this paper 
seems to predict diets very close to those observed with much less complexity. 

The model differs in other fundamental ways. First, whereas most studies 
of optimal feeding attempt to demonstrate instantaneous maximization of energy 
intake per unit time or the minimization of feeding time, they do not attempt 
to predict a specific optimum diet and compare it to a specific observed diet 
(Willson, 1971, 1972; Emlen and Emlen, 1975; Wolf et al., 1971, 1972; Menge, 
1975; Rosenzweig and Sterner, 1970; Jenkins, 1975; Charnov, 1976). The 
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only other study that successfully predicts an animal’s diet is that of Werner 
and Hall (1974) for bluegill sunfish. Another attempt to predict an animal’s 
diet by Emlen and Emlen (1975) using domestic rats, was not very successful. 
Furthermore, the instantaneous optimization assumption in these studies is 
supplanted in this paper by the moose’s ability to “know” future nutritional 
requirements (e.g., sodium and energy) and to seek an optimal diet in accord. 
In this respect, the model is similar to Katz’s (1974) optimization of feeding 
behavior in Qudea. Finally, whereas many feeding models have been a simple 
maximization or minimization of feeding time, this model utilizes the structural 
constraints of the animal to define optimal feeding, which limits the range 
of potential solutions. 

The model goes beyond the explanation of the feeding behavior of moose 
to predict the evolutionary factors controlling body size at weaning, first 
reproduction, and optimal feeding. This indicates that evolution has selected 
these traits in response to feeding considerations and other factors (e.g., sexual 
selection for bulls). Therefore, one might suggest that moose could wean 
earlier and have earlier reproduction if the evolutionary process had “designed” 
an animal with a larger rumen processing capacity. But, we must also remember 
that the food in the rumen must be attained at an expenditure of time, limiting 
other activities and increasing the risk of predation and inadequate thermoregula- 
tion. Even more important, one must recall that the food in the rumen increases 
the animal’s mass without contributing to the power output in movement, 
increasing the chances that a predator can run down the moose. Therefore, 
in these new circumstances, the moose might become a time minimizer and 
counter the increased energy-intake capabilities. 

The model may be criticized since it makes no pretense to explain seasonal 
changes in diet or the selection of individual plant species within each food 
class. These questions, however, will be dealt with in later papers. Modeling 
of a moose’s selection of plant species composing each food class can be accom- 
plished using the more standard instantaneous optimization approach of 
contingency models. Nevertheless, I believe that we should be encouraged by 
the ability of a simple model to predict an animal’s consumption of major 
food types. 

APPENDIX: RUMEN PROCESSING CAPACITY 

The rumen is known to be the location of food plant fermentation by symbiotic 
microorganisms in ruminants, but many of the particulars of rumen functioning 
are still uncertain. Using the available literature, the model employs several 
assumptions to include the daily rumen processing capacity. 

Two aspects of rumen functioning are fairly well understood. First, it requires 
time for the symbiotic microorganisms in the rumen to ferment plant tissues, 
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which indicates that there exists a positive correlation between the time food 
remains in the rumen and its breakdown, digestion (Hungate, 1966). Second, 
the passage rate of food out of the rumen to a large extent depends upon the 
specific gravity and size of food particles, which is determined by the tissue 
itself, state of digestion, and amount of mastication (Baile and Forbes, 1974; 
Blaxter, 1962). The particle size also affects the rate of fermentation through 
surface-to-volume considerations (Blaxter, 1962; studies of particle size versus 
digestion over time). Therefore, it appears that passage rate through the rumen 
and the digestion of foods are in a trade-off situation. One way, however, 
that a ruminant can increase both processes is to masticate foods very well 
to reduce the particle size, a method that includes rumination (regurgitation 
and remastication of foods already ingested). This suggests that for each type of 
food plant tissue a ruminant should have an optimal passage rate and digestion 
combination that depends to a certain extent upon a minimum mastication- 
rumination investment. 

The passage rate of food and the volume of the rumen organ determine 
the daily rumen processing capacity referred to in the model. The filling of 
this capacity in the model is assumed to depend upon the wet weight of food 
ingested. Although there are several studies of the effect of food water content 
on intake, most indicate that there is no effect (Pettyjohn et al., 1963; Davies, 
1962; Thomas et al., 1961), until the food water content exceeded 72 y0 
(Duckworth and Sherlaw, 1958; Thomas et al., 1961). At water contents greater 
than 72%, it was found that intake was controlled by the food’s wet weight. 
In the model, we are dealing with foods that are a minimum of 70% and a 
maximum of 90 o/0 water. 
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