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Abstract

We are developing an object-oriented simulation
model of rangeland grasshopper population dynamics.
Individual objects in the model are aggregated to the
landscape level. The model can simulate a community
of any number of grasshopper species acting
autonomously.  In addition, spatial and temporal
dynamics are easily included using object-oriented
programming techniques.

Introduction

Over 130 species of grasshoppers inhabit rangeland
ecosystems in the western United States. Each
grasshopper species and its associated nymphal stages
may have unique development, mortality and feeding
rates, behavior, and food preferences. In addition,
rangelands are not homogeneous and grasshoppers may
move locally between habitats in response to
environmental conditions. Some predators of
grasshoppers, such as birds, are highly mobile and may
search diverse habitats spread over relatively large areas.
Grasshopper diseases affect species and life stages
differently.  Also, their impact on a grasshopper
community depends on inoculum spreading over distance.
A computer model that can simulate this complexity may
allow us to better understand rangeland grasshopper
community ecology and develop innovative strategies for
managing rangeland grasshoppers.

In the past, computer simulations of rangeland
grasshoppers have used cohort development algorithms
{4, 5, 6], difference equations [7], energy flow models (3,
10] and other procedural-based programming techniques
{1]. All of these techniques are severely limited for
simultaneously simulating spatial relationships and
characteristics of multiple species.

To overcome the weakness of these traditional

modeling techniques, some researchers have turned to the
object-oriented programming paradigm (OOP). For
example, Stone [12] simulated a simple insect
predater/prey system where individuals were modeled as
autonomous objects. A similar approach has been used for
moose/habitat interactions [11]. Olson & Wagner (8]
used OOP to simulate an insect community on cotton.
Plant & Stone [9] provide a general description of object-
oriented modeling. OOP allows objects (insects, plants,
etc.) to function uniquely and independently in a
simulation. Therefore, complex systems can be modeled
using OOP by initializing many types of objects, and
modified copies of similar objects and then permitting
each object to respond uniquely to current conditions in
the model. The modeler does not need to generalize
system behavior at the population level.

In this paper we describe the use of OOP to build an
ecosystem model (GHSim) that focuses on rangeland
grasshoppers and related biotic and abiotic components.
We describe important data structures and techniques that
facilitate ecosystem modeling using an OOP language.

_Also, we describe the objects in the model (e.g.,

grasshopper, predator) and how they can interact.

Methods

GHSim is written in Borland Pascal 7.0 (Borland
International, Scotts Valley, Calif.) which provides object-
oriented extensions to Pascal such as encapsulation (data
and procedures can both be contained in an object) and
inheritance (inheritance allows common object behaviors,
procedures, and attributes to be defined at or near the top
of object hierarchies). For example, the basic attributes of
an insect such as six legs, and compound eyes could be
defined in an object called Insect. A second object mrght
be Beetle. Beetle would be declared as a type of Insect.
Therefore, Beetle, without additional programming, would
then share the attributes defined in Insect. Inheritance is
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very useful for modeling complex systems where general
classes of objects can be defined. More specific
subclasses of objects then can inherit most attributes, and
programming is needed only to refine or add to the
inherited suite of attributes and procedures. '

Data structures and many useful routines in GHSim
are provided by a third party programming library
(Object Professional, Turbo Power Software, Colorado
Springs, Colo.). The most important data structure is a
singly-linked list (SLL). A SLL can serve as a container
object that can store essentially unlimited numbers and
types of objects (similar to a Bag in Smalltalk). For
example, an object called Population may be a SLL that
contains all grasshopper objects at a site. Any object in
the model that is defined as a SLL node can be stored in
a SLL. In reality the object itself is not stored, but
rather, a pointer to that object. Objects in a SLL are not
sorted nor indexed. However, there may be occasions
when a specific object must be found and used in the
model, and an index to objects may be important. For
these type of situations GHSim also maintains an index
of the objects by using a string dictionary supplied in the
Object Professional library. A  string (e.g.,
"grasshopperl”) may be associated with a specific
grasshopper object. That grasshopper object can be
accessed again by supplying the index "grasshopperl” to
the string dictionary.

To provide attributes and functionality for objects in
the model, we have developed a top object called simObj
to serve as a template for all other objects simulated in
GHSim. The top object, simObj is a descendent of
Object Professional's SingleListNode object, and thus
inherits the attributes of a SLL node. These attributes
are required for any object to be stored in a SLL.
Therefore, simObj and all of its descendants can be
stored in a SLL.

Some uniformity of objects' variable and procedure
names is required to simplify the programming and keep
objects autonomous. Therefore, simObj has key variables
and procedures defined. The variables can have unique
values, and procedures can be redefined in the
descendent objects. simObj defines two variables:

objID :  Integer,
cohortSize :  real.

objID can be a unique identifier for an object and can be
converted to a string and use as an index to the object in
a string dictionary. GHSim can use cohortSize to model
individuals (cohortSize = 1) or cohorts of individuals
(cohortSize > 1). Four methods (procedures) are defined
in simOb;:

Init

Initializés the SLL node, and can be customized by
descendent objects to initialize any variables in the
object

Act

This procedure is called for each object during each
iteration of the simulation. Because every object has
the procedure Act, the program can traverse a SLL,
access each object (regardless of object type and
unknown to the program) and call its Act procedure.
Each object type may have a completely different Act
procedure which provides for autonomous and unique
behavior for each object. In simObj, Act is empty and
serves only as a template for descendent objects.

Display
Prints the object's current state to the screen

Print(toFile) )
Prints the object's current state to disk file: roFile

Each descendent object type must have these procedures
defined to provide the functionality intended for that
object. These are the only procedures called in a
simulation control loop where object is by design
unknown and does not need to be known.

simObj
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Figure 1. Object hierarchy for GHSIm.

Currently, there are only five object types defined in
GHSim and each of these are descendants of simObj:
LandScape, Patch, GrasshopperCohort, EggsCohort, (Fig.
1) and Predator. As development progresses these object
types will serve as ancestors to more specific types. THese
objects are the core of the simulation and will be described
in detail. Objects will be in bold face.

The overall structure of the model is shown in Fig. 2.



The LandScape contains all the Patches. Each Patch
produces food for the grasshoppers, contains
GrasshopperCohorts and EggsCohorts, and calls the Act
procedure each day of the simulation for every
GrasshopperCohort and EggsCohort in the Patch. The
main program is very simple. A LandScape is
initialized, which will initialize all other objects is the
model. Then LandScape's Act procedure is called to run
the simulation. Finally, the LandScape's done procedure
is called to release all memory and destroy all existing
objects.

LandScape

Figure 2. Overail model structure showing the relationship of
objects in the system.

Object: LandScape

A LandScape is considered to be the smallest area that
is essentially a closed system for the purpose of
understanding grasshopper ecology.  Therefore, a
LandScape could represent a large valley, where
grasshoppers and predators neither immigrate nor
emigrate.

Variables:

PatchesPtr
a SLL that contains all Patches (habitat sites)
in the LandScape

Patchl.ocDic
a string dictionary used to index all Patches
in the LandScape by x,y coordinate location

Precip
real type variable for total precipitation for
the current day

Temperature
real type variable for average temperature for
the current day

Methods:

init(infile)
does preliminary setup, opens output files, and
initializes all objects in the LandScape for the
first day of the simulation, may do
initialization from file: infile

Act
controls the daily loop for the simulation,
calls Act for each Patch in the PatchesPtr list,
sets the amount of grasshopper food
(vegetation) in each Patch (in the future each
Patch will simulate its own food growth)

Display
not yet implemented, may be used to call
Display for all Patches, or summaries and
displays data from the Patches

Print
not yet implemented, may be used to call
Print for all Patches, or summarizes and prints
data from the Patches

Done
calls Done for each Patch, calls Done for
PatchLocDict to dispose of its memory,
closes the output files

Object: Patch

The Patch is defined a hexagon that contains only one
grasshopper habitat type (i.e, the plant community does not
change within the Patch borders). All Patches are the
same size and, because of the hexagon shape, can be
packed together without gaps. To create larger areas of
identical habitat, several Patches that have the same habitat
can be aggregated together. Grasshoppers reside within a
Patch. However, they may migrate from one Patch to
another.

Variables:

eggPopulation
a SLL that contains all of the grasshopper egg
objects (EggsCohorts) in the Patch

population
a SLL than contains all of the motile
grasshopper objects in the Patch

Habitat
a string descriptor of the Habitat type of the
Patch, not currently used

XLoc, YLoc
location coordinates of the Patch within the



)

LandScape
totalFoodReq
total food required (mg) for all grasshoppers
in the Patch for the current day
eggPopSize ,
sum of number of grasshopper eggs in all
EggsCohonrts in the Patch
food
amount of food for grasshoppers (mg)
currently available in the Patch

Methods:

init(IDNumber)
calls simObj.init, sets objld = IDNumber,
and creates and initializes eggPopulation and
population :

Display
prints to the screen summary information
about the Patch

Print(toFile)
prints to toFile summary information about
the Patch

AddEggs(eggs)
creates a new grasshopper egg cohort
(EggsCohort) with eggs in the cohort,
eggPopSize is increased by eggs

AddGrasshopperCohort(aCohort)
appends an existing grasshopper cohort
object (aCohort) to population

purgeCohorts(aPopPtr)
deletes any empty grasshopper cohorts
(cohorts whose size is equal to zero) in
population (aPopPtr)

SortByBodyMass
sorts population by bodyMass so that the
cohorts with the largest individuals are at the
head of the list (population), important for
allocating resources and dealing with
competition in other parts of model

foodAvail
a function that returns the amount of food
(mg) currently available in the Patch for
grasshoppers

removeFood(foodConsumed)
decreases food in the Patch by
JoodConsumed, this may result in food being
negative and is used in
GrasshopperCohort.Act to impose
competition and weight loss

Act
purgeCohorts is called to delete any empty
cohorts from population, totalFoodReq (mg)
is calculated by summing getFoodNeed for
n, removeFood is called to remove

totalFoodReq from food, each
"GrasshopperCoheort in population is called to
Act, lastly each EggsCohort in eggPopulation
is called to Act

Done
deletes from memory all objects in population
and eggPopulation

Object: Predator

The Predator object is not implemented yet, but will be
first used for insectivorous birds. A Predatorwill probably
reside in the LandScape with a Patch as a "home" base.
Birds are highly mobile and will be allowed to move and
forage in many Patches each day.

Object: GrasshopperCohort

The GrasshopperCohort is the most important and best
defined object in GHSim. GrasshopperCohort provides
methods for grasshopper growth, phenological
development, feeding, starvation and weight loss, food
consumption, egg resorption by the females when food is
insufficient, reproduction, and movement from Patch to
Patch. Competition for food results from the current Patch
reporting negative food for the current day. The potential
effects of competition are reduced reproduction, egg
resorption by gravid females, weight loss, and starvation.

Vanables:

podSize
parameter, initial number of eggs in a newly
forming egg pod in a female grasshopper,
may be species-specific

minPodSize
parameter, minimum number of eggs in
forming egg pod before the female will resorb
all remaining eggs and potentially try to start
a new pod

eggSize
current mass of the individual eggs in a
forming pod (mg)

age
age (days) of the cohort since hatching

minEggSize
parameter, mass (mg) of an egg when ready
to be laid as part of a pod

daysLoss
number of consecutive days of weight loss for
the cohort

massLoss
cumulative mass loss/individual for the cohort

(_mg)

i



eggWtLaid
mass of an egg when it is laid (mg)
eggWtHatch
mass of an egg at hatch (mg)
bodyMass :
fresh weight body mass (mg)/individua
maxBodyMass
maximum bodyMass attained at any time
during the simulation for the cohort
foodForGain
surplus food (mg)/individual, amount beyond
that needed for maintenance, can be used for
growth and reproduction
cGrowth
parameter, conversion factor used to convert
food to grasshopper mass (0.05)
cEggs
parameter, conversion factor used to convert
food to grasshopper egg mass (0.1)
adultStage
parameter, life stage number to indicate
adult (6.0)
reproStage
parameter, life stage number for stage at first
reproduction (6.2)
stage
current life stage
excessFood
amount of food beyond that needed by the
GrasshopperCohort for growth or
maintenance, if negative grasshoppers lose
weight
sexRatio
parameter, to determine the how many new
eggs are male or female (0.5)
gender
male or female
currentPatch
a pointer to the Patch where the
GrasshopperCohort resides, provides access
to information about the Patch (i.e., location,
foodAvail)

Methods

initUDNumber, inPatch, Mass, Size)
sets: objID = IDNumber, currentPatch =
inPatch, bodyMass = Mass, cohortSize
Size

Display
prints to the screen summary information
about the GrasshopperCohort

Print(toFile)
prints to toFile summary information about
the GrasshopperCohort

[l

DoReproduction
eggs in a reproductive female will increase in
size:

* eggSize = eggSize +
(excessFood/eggNumber) * cEggs,

then currentPatch.removeFood(excessFood *
cohortSize) is called; an egg pod will be laid
when eggSize is greater than minEggSize,
eggSize is set to zero, and eggNumber is then
set to podSize to start a new egg pod

GetFoodNeed
a function that calculates the total food
required by the cohort/d (mg) as a function of
foodReq and maxFoodIntake

calcStage
a function that calculates the life stage
number as a function of bodyMass

foodReq
a function that calculates the food
requirements/d/individual as a function of
maxBodyMass (mg)

maxFoodIntake
a function that calculates the maximum food
that can be consumed/d/individual as a
function of maxBodyMass, later the effect of
temperature can be included

Act
This procedure controls the basic life
functions and actions of a' grasshopper for a
single day. Most of the Pascal code is
included here to show the detail. The
grasshoppers are called by their Patch to Act
in order from those with the greatest
bodyMass to least.

age := age + 1;

{ Do phenological development as a function of food availability.
Therefore, caiculate stage as a function of bodyMass. }
stage := calcStage:;

{ Keep track of largest bodyMass attained. Used later for
starvation death and potential for weight gain. }
if maxBodyMass < bodyMass then
maxBodyMass := bodyMass;

{ Set excessFood to food in Patch after basic metaboiic needs
for food are met and that amount of food has been removed from
the patch. This occurs in Patch.Act. If there was not enough food
in then patch for basic metabolic needs the Patch.food and
Patch.foodAvail will be negative until next day's food growth.
excessFood will be negative and negative growth (wt loss) ar egg
resorption will occur.}

excessFood :=
currentPatch”. foodAvail/cohortSize;
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{ If excessFood < 0 then hoppers will lose wt. They shouid
lose weight in proportion to their demand or need for food. Per
capita shortfail for food for this cohort. }

if excessFood < 0.0 then

excessFood := excessFood *
(GetFoodNeed/currentPatch”.totalFoodReq) ;

{ GetfoodNeed already eaten and removed from Patch, by the
Patch. Hoppers cannot eat all available food, only up to
maxFoodintake. If maxFoodintake < foodReq the excessFood
will be negative and hoppers will lose weight or resorb eggs.}

if excessFood > 0.0 then
excessFood := (maxFoodIntake - foodReq);

{Grow the immature stages. Adults do not grow.}
if (stage < reproStage) then
begin
bodyMass := bodyMass +
cGrowth) ;

(excessFood *

{Hoppers eat the food required for growth. If excessFood is
negative then Hoppers lose weight and no food consumed.}
if excessFood > 0 then
currentPatch”.removeFood (excessFood *
cohortSize);
end;

{ Adult females can regain weight lost or weight loss is
prevented by resorbing eggs. }
if (Gender = female) and (stage >= reproStage)
and (excessFood < 0) and (eggSize > 0) then
begin
{calculate the number of eggs that must be resorbed to
maintain bodyMass }
{add 0.49 so that all fractional eggs round up to one}
resorpNum := round (abs (excessFood) *
(cEggs/EggSize) + 0.49);
if resorpNum > eggNumber then
resorpNum := eggNumber;

{convert eggs back to food equivalents }

excessFood := excessFood + ((EggSize/cEggs) *
resorpNum) ;

eggNumber := eggNumber - resorpNum;

{ Female will resorb rest of pod if number of eggs left is
less than minPodSize. } :
if eggNumber < minPodsize then
begin
excessFood := excessFood + ((EggSize/cEggs)
* eggNumber);
{ Reset the eggs to start a new clutch. }
eggSize := 0;
eggNumber := PodSize;
end;
end; { end of female weight gain and egg resorption }

{ Adults can only grow if they need to regain weight (i.e., they
have lost weight ).}
if (stage >= adultStage) and (bodyMass <
maxBodyMass) and (excessFood > 0) then
in
foodForGain := (1/cGrowth) *
{maxBodyMass - bodyMass);

{ If true: Not enough intake for total recovery from wt
loss; if false: enough intake for total recovery and
maybe also reproduction. }

if foodForGain > excessFood then
foodForGain := excessFood;

bodyMass := bodyMass + (foodForGain *
cGrowth) ;

{ Hoppers eat the food required for wt gain. }

currentPatch”.removeFood (foodForGain
*cohortSize);

{ Some food is left for reproduction: egg production. }
excessFood := excessFood - foodForGain:;
end; - Aduits gain weight }

{ Aduits lose weight because excessFood is negative. }
if (stage >= adultStage) and (excessFood < 0)
then
in
bodyMass := bodyMass + (excessFood *
cGrowth) ; ‘
end;

{ Keep track of mass loss and for how many consecutive days.
Used later for starvation. }
if excessFood < 0 then
begin
daysLoss := daysLoss + 1;
massLoss := maxBodyMass - BodyMass:;
end
else
begin
daysLoss
massLoss
end;

0;
maxBodyMass - BodyMass;

o=
=
.

=

{ Impose starvation if more than 30% of body mass has been
lost. The Patch will delete any grasshopper cohorts that are

empty. }
if (massLoss/maxBodyMass) > 0.30 then
cohortSize := 0;

DoReproduction;
if bodyMass < 0.0 then bodyMass := 0.0;

Object: EggsCohort

Currently, EggsCohort only has the features in inherited
from simObj. No other functionality has been
implemented. In the future, overwinter mortality and
spring egg hatch may be added.

Results

-GHSim (58 kb for the executable code) currently
simulates any number of Patches within a LandScape (54
bytes). The only limitation on the number of objects in
the model is available memory. The virtual memory
capabilities of OS/2 2.1 (International Business Machines
Corp., Armonk, New York) and Micorosoft Windows
(Microsoft Corp., Seattle, Wash.) allow GHSim to be
limited only by disk space on 80386 or more sophisticated
microcomputers. Each Patch (312 bytes) may contain any
number of GrasshopperCohorts (127 bytes) and
EggsCohorts (14 bytes). Each GrasshopperCohort and
EggsCohort is unique and can, therefore, represent any
grasshopper species.

Fig. 3a shows the population dynamics of seven
GrasshopperCohorts in a single Patch where food becomes
limited and competition for food causes some of the
grasshoppers to starve. Grasshoppers with larger body
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sizes will win a competitive interaction with smaller
grasshoppers. However, Fig. 3a shows that the smaller
grasshoppers can eat enough to hinder growth and
reproduction by the larger grasshoppers when food is
limited (Fig. 3b). This feature is especially apparent in
the last GrasshopperCohort which exhibits slow growth
and cannot enter the reproductive stage until the five
smaller GrasshopperCohorts starve and are removed from
the system.

Food (mg)

cgggLEEEE
s663

iond f
D 10 20 30 4 50 60 70 9 90
Day

Figure 3. A) Simulation of 7 grasshopper cohorts in a singie
patch, and B) food and grasshopper eggs.

Discussion

OOP techniques are very useful for modeling complex
ecological systems. The programming required to create

systems that can contain multiple species and features is

relatively simple. However, as a result of creating more
complex models, two main problems have surfaced.
First, because the model is complex (multiple patches,
each with multiple cohorts and species of grasshoppers,
and eggs), so is the potential output. Therefore, the
results of a simulation are often difficult to comprehend.
They must be sampled and summarized creating many
potentially subjective views of the simulation. However,
a similar problem arises with sampling and
comprehending natural ecosystems.

The second problem also is related to model
complexity. How can the model results be visualized or
displayed? Time is an important element in the
simulation. Therefore, the time series of these very
complex data should be displayed so that system
dynamics can be understood and evaluated.

We hope that analyses of GHSim and components that
will be included in the future (predation, grazing
management, and weather) will be useful for guiding
research for innovative and ecologically sound rangeland
grasshopper management. OOP and robust analysis of
model output will be useful tools during this process.
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